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Abstract
Holas, Howard and March (2003 Phys. Lett. A 310 451) have obtained analytic
solutions for ground-state properties of a whole family of two-electron spin-
compensated harmonically confined model atoms whose different members are
characterized by a specific interparticle potential energy u(r12). Here, we make
a start on the dynamic generalization of the harmonic external potential, the
motivation being the serious criticism levelled recently against the foundations
of time-dependent density-functional theory (e.g., Schirmer and Dreuw 2007
Phys. Rev. A 75 022513). In this context, we derive a simplified expression
for the time-dependent electron density for arbitrary interparticle interaction,
which is fully determined by a one-dimensional non-interacting Hamiltonian.
Moreover, a closed solution for the momentum space density in the Moshinsky
model is obtained.

PACS numbers: 31.15.Ew, 31.25.−v, 31.70.Hq

1. Background and outline

A family of two-electron spin-compensated harmonically confined model atoms has recently
been proposed and studied by Holas, Howard and March [1] (referred to below as HHM). Each
member of this family is characterized by a specific interparticle potential energy u(|r1 − r2|).
HHM showed that the ground-state spatial wavefunction �(r1, r2) then separated in the
centre-of-mass (c) and relative motion (b) coordinates defined by

c = r1 + r2

2
, b = r1 − r2, (1)
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to yield

�(r1, r2) = ψCM(c)ψRM (b). (2)

The centre-of-mass term ψCM is determined once for all as a Gaussian function. Naturally the
relative motion part ψRM entering equation (2) involves the interparticle repulsion u(b), but
only through an effective one-body potential energy Veff(b) given by (here and in the following
atomic units are used [h̄, e,me = 1 ])

Veff(b) = 1
4ω2

0b
2 + u(b), (3)

which must then be inserted in a one-particle Schrödinger equation to solve for the relative
motion wavefunction ψRM. Analytic solutions exist for a number of choices of u(b) in
equation (3) including harmonic [2], Coulombic [3] and the inverse square law [4, 5].

As to the motivation for the dynamic generalization of the HHM static family of solutions
in [1], we cite the recent criticism of Schirmer and Dreuw [6] that lies at the foundations of time-
dependent density-functional theory (TDDFT); a very popular approximate route for current
calculations of electronic excitation energies in atoms and molecules [7]. Because of such
criticism, it seemed the more important to broaden considerably the class of available exact
time-dependent analytical treatments. In that context, we must note here for the Coulombic
interaction in a two-electron model with harmonic confinement [8], the study of D’Amico
and Vignale [9] in which the harmonic confinement is generalized to be time-dependent,
the dimensionality of the problem these authors considered being reduced from three in the
so-called Hookean atom [3, 8] to two.

Our objective here is to effect a related generalization of the whole family of two-
electron model atoms considered by HHM to time-dependent theory. We therefore keep the
discussion as general as possible and turn to specific forms of the interparticle interaction only
in analytically solvable cases. The resulting expressions could serve as a convenient starting
point for a simplified numerical treatment, which is however outside the scope of this work.

2. Time propagation of harmonically confined two-electron model atoms

We wish to solve the Schrödinger equation

i
∂

∂t
� = Ĥ�. (4)

Here we take the model which is a time-dependent generalization of the study of HHM. Thus,
the Hamiltonian operator assumed has the form

Ĥ = − 1
2

(∇2
r1

+ ∇2
r2

)
+ 1

2ω2
0(t)

(
r2

1 + r2
2

)
+ u(|r1 − r2|). (5)

The time-dependent external potential involving ω2
0(t) drives the system from its ground

state �0 at t = 0 to a general time-dependent state �(r1, r2, t) at time t. Following HHM, we
use the centre-of-mass vector c and the relative motion vector b in equation (1) to find

i
∂

∂t
�(b, c, t) =

[
−∇2

b − 1

4
∇2

c +
1

4
ω2

0(t)(b
2 + 4c2) + u(b)

]
�(b, c, t). (6)

With the help of the product ansatz

�(b, c, t) = ψCM(c, t)ψRM (b, t), (7)

equation (6) is without loss of generality readily separated into relative motion and centre-of-
mass channels according to

i
∂

∂t
ψCM(c, t) =

[
− 1

2mcm
∇2

c +
mcm

2
ω2

0(t)c
2

]
ψCM(c, t), (8)
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i
∂

∂t
ψRM (b, t) =

[
− 1

2mrm
∇2

b +
mrm

2
ω2

0(t)b
2 + u(b)

]
ψRM (b, t), (9)

with effective masses mcm = 2 and mrm = 1/2. It should be noted that any (time-dependent)
separation constant would give rise to phase factors of opposite sign in the RM and CM
wavefunctions, which would then cancel in the formation of the total wavefunction and is
hence neglected.

2.1. Solution of the CM problem in two and three dimensions

Since the centre-of-mass Hamiltonian does not depend on the interaction potential u(b), the
CM system should be solved once and for all. In two dimensions, this has already been
accomplished by D’Amico and Vignale [9] for an arbitrary time dependence of ω0(t). Their
result for the CM wavefunction reads

ψCM,2D(c, t) =
∑
n,m

cnmχnm(c, t)�m(θ), (10)

where the fact that the Hamiltonian does not depend on the centre-of-mass angular variable
θ was used to separate the wavefunction into an angular part characterized by the quantum
number m,

�m(θ) = 1√
2π

e−imθ , (11)

and a radial part

χnm(c, t) = A(t)cm eB(t)c2
Lm

n [C(t)c2], (12)

which involves the generalized Laguerre polynomials Lm
n and the purely time-dependent

functions4

A(t) =
√

n!2

(n + m)!
[mcmφ̇(t)]

m+1
2 e−i(2n+m+1)[φ(t)−φ(0)], (13)

B(t) = −mcm

2

[
φ̇(t) − i

d ln |X(t)|
dt

]
, (14)

C(t) = mcmφ̇(t). (15)

The complex functions X(t)

X(t) = |X(t)| eiφ(t) with φ̇(t) > 0, (16)

are solutions to the equation of motion for the classical harmonic oscillator

Ẍ = −ω2
0(t)X(t), (17)

which can be solved once an explicit form of ω2
0(t) is chosen. Remarkably, the time propagation

of the harmonically confined quantum system is fully determined by its classical analogue.
As a new result, we compute in the following the CM wavefunction for the general case

of three dimensions. The derivation turns out to be straightforward and parallels the 2D case
with minor modifications. To start with, we write the state ψ

CM,3D
nlm with main quantum number

n, angular momentum l and magnetic quantum number m as a product of a radial part χ̃nl and

4 The form of A(t) given here differs by a factor of 2 from the result in [9].

3



J. Phys. A: Math. Theor. 41 (2008) 085304 T A Niehaus et al

spherical harmonics Ylm:

ψ
CM,3D
nlm (c, t) = χ̃nl(c, t)Ylm(θ, φ). (18)

The more general case in which the system is not in one of its eigenstates at t = 0 can
be handled easily according to equation (10), since the expansion coefficients do not depend
on time. Notwithstanding, the ansatz equation (18) fully allows for excitations to eigenstates
with different main quantum number due to the time-dependent potential realized by ω0(t).

Proceeding, the radial equation of motion takes the following form:

i
∂

∂t
χ̃nl(c, t) =

[
− 1

2mcm

∂2

∂c2
− 1

mcmc

∂

∂c
+

l(l + 1)

2mcmc2
+

1

2
mcmω2

0(t)c
2

]
χ̃nl(c, t), (19)

which we solve using a time-dependent generalization of the well-known result for the
isotropic harmonic oscillator in the ground state

χ̃nl(c, t) = Ã(t)cl eB̃(t)c2
L

l+1/2
1
2 (n−l)

[C̃(t)c2]. (20)

Inserting equation (20) into (19) and taking advantage of the defining differential equation
of the associated Laguerre polynomials, we obtain after some algebra the following expressions
for the functions Ã, B̃ and C̃:

i ˙̃A +
(2l + 3)

mcm
ÃB̃ − (n − l)

mcm
ÃC̃ = 0, (21)

i ˙̃B +
2

mcm
B̃2 − 1

2
mcmω2

0(t) = 0, (22)

i ˙̃C +
4

mcm
B̃C̃ +

2

mcm
C̃2 = 0. (23)

Equations (21)–(23) are (besides different prefactors) completely equivalent to equations (A4)–
(A6) in the mentioned work of D’Amico and Vignale, which allows us to write down the radial
solution in three dimensions immediately:

χ̃nl(c, t) =

√√√√2n+l+2m
l+ 3

2
cm

[
1
2 (n − l)

]
!
[

1
2 (n + l)

]
!√

π(n + l + 1)!

× [φ̇(t)]
2l+3

4 exp

[
−1

2
mcm

(
φ̇(t) − i

d ln |X(t)|
dt

)
c2

]

× e−i(n+ 3
2 )[φ(t)−φ(0)]clL

l+1/2
1
2 (n−l)

[mcm φ̇(t)c2]. (24)

2.2. Time-dependent electron density for general interparticle interaction

Having solved the problem for the CM system, we now turn to an evaluation of the time-
dependent electron density n(r, t) for the special but important case of a system that is in its
ground state at t = 0. The square modulus of the CM wavefunction then reduces to a simple
Gaussian function∣∣ψCM,3D

000 (c, t)
∣∣2 = 1

a3
CM(t)π3/2

exp

(
− c2

a2
CM(t)

)
, (25)

where the time dependence is fully governed by the characteristic length scale aCM(t) of the
oscillator:

aCM(t) = 1

mcmφ̇(t)
. (26)
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Since the potential u(b) depends on the interparticle distance only, also the relative motion
wavefunction ψRM,3D can once again be split into angular and radial parts according to

ψ
RM,3D
nlm (b, t) = ζ̃nl(b, t)Ylm(θ, φ), (27)

where ζ̃nl(b, t) needs in general to be determined by time propagation in one spatial dimension.
For the mentioned special case, the electron density is given by

n(r1, t) = 2
∫ ∣∣∣∣ψCM,3D

000

(
1

2
(r1 + r2), t

)
ψ

RM,3D
000 (r1 − r2, t)

∣∣∣∣
2

dr2, (28)

which can be considerably simplified using equations (25) and (27). After evaluation of the
angular integrations and substitution of y = (r1 − r2)/aCM for r2, we arrive at

n(r1, t) = 8√
π

exp

(
− r2

1

a2
CM(t)

) ∫ ∞

0
dy y2 exp

(
−y2

4

) ∣∣ψRM,3D
000 (aCM(t)y, t)

∣∣2

× sinh(r1y/aCM(t))

(r1y/aCM(t))
, (29)

which constitutes a non-trivial generalization of the HHM result for the static ground-state
density given in equation (14) of that publication.

2.3. Time-dependent atomic scattering factor

A quantity which is easily accessible by experiment is the atomic scattering factor given by
the Fourier transform of the atomic electron density

f (k, t) =
∫

n(r, t) eikr dr. (30)

Inserting equation (7) into (30) and taking advantage of the fact that the Jacobian for the
transformation {r1, r2} → {b, c} is unity, we obtain

ftot(k, t) = 2

[∫
|ψCM(c, t)|2 eikc dc

] [∫
|ψRM (b, t)|2 ei kb

2 db
]

:= 2fCM(k, t)fRM(k/2, t), (31)

which shows that the total two-electron scattering factor ftot decouples into a product of
one-particle scattering factors of the centre-of-mass and relative motion systems.

While the term fRM remains until the relative motion Schrödinger equation is solved for
a specific ω0(t) and interparticle potential u(b), the other piece can be evaluated based on the
results of the last section. In three dimensions, a closed solution is however only possible
for the case of vanishing angular momentum. We therefore step back to the two-dimensional
problem studied by D’Amico and Vignale. For the sake of simplicity, we treat only the case
for which the system is in an arbitrary eigenstate at t = 0. The more general superposition of
equation (10) can be solved along the lines of the following derivation and poses no additional
problems.

Using equation (12), the centre-of-mass structure factor reads

fCM(k, t) ≡ fCM(k, t) =
∫ ∞

0
J0(kc)|χnm(c, t)|2c dc, (32)

where the angular integration leads to the Bessel function of the first kind J0. After insertion
of equation (13) into (15) and polynomial expansion of the Laguerre functions according to

Lm
n (x) =

n∑
s=0

(
n + m

n − s

)
(−x)s

s!
, (33)

5
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we arrive at

fCM(k, t) = n!2

(n + m)!
[mcmφ̇(t)]m+1

n∑
s=0

n∑
t=0

(
n + m

n − s

)(
n + m

n − t

)
(−mcmφ̇)s+t

s!t!

×
∫ ∞

0
J0(kc) e−mcmφ̇(t)c2

c2(m+s+t)+1 dc. (34)

The solution of the remaining integral is known [10] and involves the confluent hypergeometric
functions of the Kummer-type M:∫ ∞

0
e−a2t2

tµ−1Jν(bt) dt = �
(

µ+ν

2

)(
b

2a

)ν

2aµ�(ν + 1)
M

(
µ + ν

2
, ν + 1,− b2

4a2

)
∀ �(µ + ν) > 0; �(a2) > 0. (35)

The CM structure factor then takes the final form

fCM(k,mcmφ̇(t)) = n!

(n + m)!

n∑
s=0

n∑
t=0

(
n + m

n − s

)(
n + m

n − t

)

× �(m + s + t + 1)

s!t!
M

(
m + s + t + 1, 1,− k2

4mcmφ̇

)
, (36)

which constitutes one of the main results of this work. As indicated, the time dependence of
equation (36) is solely determined by the phase derivative φ̇, which equals the frequency ω0 of
the confining harmonic potential in the static limit. For a system initially in its ground state,
fCM reduces to a simple Gaussian which correctly tends, respectively, towards the number of
electrons (one in this case) as k approaches zero, and zero as k grows to infinity.

Having obtained a closed solution for the centre-of-mass structure factor, we now briefly
discuss the relative motion term. In general, it will be necessary to evaluate this part by
numerical methods, which is beyond the scope of the present paper. The so-called Moshinsky
atom [2] characterized by the harmonic interparticle potential u(b) = − 1

2Kb2 provides a
useful exception and can be treated analytically. To this end, we note that in this case the
relative motion Hamiltonian is equivalent to a centre-of-mass one with the effective mass
m̃cm = 1/2 and the force constant ω2

0(t) − K/m̃cm. Solving

X̃(t) = |X̃(t)| eiφ̃(t) with ¨̃X = −
(

ω2
0(t) − K

m̃cm

)
X̃ (37)

allows one to obtain the total structure factor of the Moshinsky atom from

f K
tot(k, t) = 2fCM(k,mcmφ̇(t))fCM(k/2, m̃cm

˙̃φ(t)). (38)

3. Relation to TDDFT

As mentioned in the introduction, this work was motivated by the serious criticism of Schirmer
and Dreuw [6] of the 1984 theorems of Runge and Gross [11]. In [6], the proof in [11] was not
only challenged but seemingly refuted. To be specific, the authors claimed that the variational
derivation of the time-dependent Kohn–Sham equations in [11] is invalid due to an ill-defined
action functional presented there. A nonvariational formulation would also run into problems,
since in this case the Kohn–Sham system would allow one to reproduce but not to predict the
exact electron density.

6
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The results of this work can in principle be used to investigate this issue in an actual
numerical calculation. For the two-electron spin-compensated system at hand, it is possible
to construct the exact exchange-correlation potential from the known electron density in real
(equation (29)) or momentum space (equation (38)). This is in line with van Leeuwen’s
proof [12] of mapping from densities to potentials in TDDFT with general two-particle
interactions. Such a construction was, for example, already performed by Lein and Kümmel
[13] or D’Amico and Vignale [9]. Using this potential in the numerical solution of the time-
dependent Kohn–Sham orbitals would then open the opportunity to compare the propagated
and exact electron density.

4. Summary and possible future directions

As set out in the introduction, HHM [1] proposed and solved the problem of a two-electron
spin-compensated family of harmonically confined atoms with a general interparticle repulsive
potential u(r12).

Using the available time-dependent study of D’Amico and Vignale [9], but now in two
dimensions, we display here the time-dependent density n(r, t) for a system initially in the
ground state in three dimensions. While the general result is somewhat formal, for the so-
called Moshinsky atom characterized by the choice u(b) = − 1

2Kb2 with K measuring the
strength of the interparticle repulsion, we derive the momentum space electron density f K(k, t)

functionally from the D’Amico and Vignale form for the independent two-electron case with
K set equal to zero.

For the future, progress may come by taking a specific choice of the time dependence
ω2

0(t) of the harmonic confinement potential. Singling out a specific Fourier component
through the choice exp(iωt) + exp(−iωt) is restrictive to periodic time dependence but may
allow, in the future, a more elegant discussion of the time-dependent particle density n(r, t)
at the heart of all current theories of TDDFT. But, of course, more important would be to pass
from a model ‘He-like’ family to a four-electron interacting ‘Be-like’ system, where an elegant
Dirac idempotent density matrix already exists in the independent particle (Hartree–Fock or
Kohn–Sham) limit (see, for example, [14, 15]).
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